Orbital magnetism of transition-metal adatoms and clusters on the Ag and Au„001... surfaces
نویسندگان
چکیده
We present ab initio calculations of the orbital moments and magnetocrystalline anisotropy energies for 3d , 4d , and 5d transition-metal adatoms and for some selected small clusters on the ~001! surfaces of Ag and Au. The calculations are based on the local density approximation of density functional theory and apply a fully relativistic Koringa-Kohn-Rostoker Green’s function method. Due to the reduced coordination of the adatoms and the weak hybridization with the substrate, we find fairly large orbital moments, in particular for the elements towards the end of the series. The general trend can be understood from a simple tight-binding model. The orbital moments are connected with very large anisotropy energies. While the orbital moments are on the Ag substrate somewhat larger than on Au, the magnetic anisotropy has about the same size for both substrates. Calculations for small clusters of Fe, Ru, and Os adatoms show, that due to interaction effects the orbital moments are strongly reduced, e.g., by 50% for the dimer atoms. The size of the reduction correlates well with the coordination number. Similar reductions also occur for the magnetic anisotropy energies.
منابع مشابه
First-principles study of adsorption, diffusion, and charge stability of metal adatoms on alkali halide surfaces
In this work we have performed first-principles calculations based on the spin-polarized density-functional theory for the adsorption and diffusion of Au, Ag, and Pb atoms on NaCl 001 , KCl 001 , and KBr 001 surfaces. We consider also the influence of adatom charge on the adsorption and diffusion. In order to characterize the different systems we explicitly calculate charge transfer between sur...
متن کاملMetal Adatoms and Clusters on Ultrathin Zirconia Films
Nucleation and growth of transition metals on zirconia has been studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Since STM requires electrical conductivity, ultrathin ZrO2 films grown by oxidation of Pt3Zr(0001) and Pd3Zr(0001) were used as model systems. DFT studies were performed for single metal adatoms on supported ZrO2 films as well as the (1̅...
متن کاملMagnetism of 3d transition metal atom on Au(110)-(1×2) and Au(111) surfaces
We calculate the magnetism of 3d transition-metal atoms on Au(110)-(1×2) and Au(111) surfaces based on the Density Functional Theory. Our results show that the surface relaxation enhances the orbital moments of left-end elements (Ti,V) and quenches the orbital moments of right-end elements (Fe,Co,Ni) on the Au(110)(1×2) surface. The middle elements (Cr,Mn) of the group have large spin moments o...
متن کاملThe Effect of Coinage Transition Metal (Cu, Ag, Au) Substitutions on Two-electron Redox Potential of Quinones
Quinones are a class of compounds which have widespread importance in chemistry, biology and medicine. Because of their appropriate performance in electron transferring rate, quinones are among the most applicable mediators in biosensors. Recently, the effects of different non-metal substitutions on redox potential of quinone have been investigated to design suitable mediators for different ele...
متن کاملInteraction of atomic hydrogen with monometallic Au(100), Cu(100), Pt(100) surfaces and surface of bimetallic Au@Cu(100), Au@Pt(100) overlayer systems: The role of magnetism
The spin-polarized calculations in generalized gradient approximation density–functional theory (GGA–DFT) have been used to show how the existence of second metals can modify the atomic hydrogen adsorption on Au (100), Cu (100), and Pt (100) surfaces. The computed adsorption energies for the atomic hydrogen adsorbed at the surface coverage of 0.125 ML (monolayer) for the monometallic Au (100), ...
متن کامل